Linear in the parameters regression

Carl Edward Rasmussen

October 9th, 2023

How do we fit this dataset?

- Dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$ of N pairs of inputs x_i and targets y_i . This data can for example be measurements in an experiment.
- Goal: predict target y_* associated to any arbitrary input x_* . This is known a as a regression task in machine learning.
- Note: Here the inputs are scalars, we have a single input feature. Inputs to regression tasks are often vectors of multiple input features.

Model of the data

- In order to predict at a new x[∗] we need to postulate a model of the data. We will estimate y_* with $f(x_*)$.
- But what is $f(x)$? Example: a polynomial

$$
f_w(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_M x^M
$$

The w_i are the weights of the polynomial, the parameters of the model.

Model of the data. Example: polynomials of degree M

Model structure and model parameters

- Should we choose a polynomial? The model structure
- What degree should we choose for the polynomial? model structure
- For a given degree, how do we choose the weights? model parameters
- For now, let find the single "best" polynomial: degree and weights.

Fitting model parameters: the least squares approach

- Idea: measure the quality of the fit to the training data.
- For each training point, measure the squared error $e_i^2 = (y_i f(x_i))^2$.
- Find the parameters that minimise the sum of squared errors:

$$
E(\boldsymbol{w}) = \sum_{i=1}^{N} e_i^2
$$

 $f_w(x)$ is a function of the parameter vector $w = [w_0, w_1, \dots, w_M]^\top$.

Least squares in detail. (1) Notation

Some notation: training targets **y**, predictions f and errors **e**.

- $\mathbf{y} = [y_1, \dots, y_N]^\top$ is a vector that stacks the N training targets.
- $f = [f_w(x_1), \dots, f_w(x_N)]^\top$ stacks $f_w(x)$ evaluated at the N training inputs.
- $e = y f$ is the vector of training prediction errors.

The sum of squared errors is therefore given by

$$
E(w) = ||e||^2 = e^{\top}e = (y - f)^{\top}(y - f)
$$

More notation: weights w, basis functions $\phi_i(x)$ and matrix Φ .

- $\mathbf{w} = [w_0, w_1, \dots, w_M]^\top$ stacks the M + 1 model weights.
- $\phi_j(x) = x^j$ is a basis function of our linear in the parameters model.

$$
f_w(x) = w_0 1 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j \phi_j(x)
$$

• $\Phi_{ij} = \phi_i(x_i)$ allows us to write $f = \Phi w$.

Least squares in detail. (2) Solution

A Gradient View. The sum of squared errors is a convex function of w:

$$
E(\boldsymbol{w})~=~(\boldsymbol{y}-\boldsymbol{f})^\top(\boldsymbol{y}-\boldsymbol{f})~=~(\boldsymbol{y}-\boldsymbol{\Phi}\,\boldsymbol{w})^\top(\boldsymbol{y}-\boldsymbol{\Phi}\,\boldsymbol{w})
$$

The gradient with respect to the weights is:

$$
\frac{\partial E(w)}{\partial w} = -2 \Phi^{\top} (y - \Phi w) = 2 \Phi^{\top} \Phi w - 2 \Phi^{\top} y.
$$

The weight vector \hat{w} that sets the gradient to zero minimises $E(w)$:

$$
\hat{\mathbf{w}} = (\mathbf{\Phi}^\top \mathbf{\Phi})^{-1} \mathbf{\Phi}^\top \mathbf{y}
$$

A Geometrical View. This is the matrix form of the Normal equations.

- The vector of training targets **y** lives in an N-dimensional vector space.
- The vector of training predictions f lives in the same space, but it is constrained to being generated by the $M + 1$ columns of matrix Φ .
- The error vector **e** is minimal if it is orthogonal to all columns of **Φ**:

$$
\Phi^{\top} e = 0 \iff \Phi^{\top} (\mathbf{y} - \Phi \mathbf{w}) = 0
$$

Least squares fit for polynomials of degree 0 to 17

Have we solved the problem?

- Ok, so have we solved the problem?
- What do we think y_* is for $x_* = -0.25$? And for $x_* = 2$?
- If M is large enough, we can find a model that fits the data

Overfitting

- All the models in the figure are polynomials of degree 17 (18 weights).
- All perfectly fit the 17 training points, plus any desired y_* at $x_* = -0.25$.
- We have not solved the problem. Key missing ingredient: **assumptions!**
- • Do we think that all models are equally probable... before we see any data? What does the probability of a model even mean?
- Do we need to choose a single "best" model or can we consider several? We need a framework to answer such questions.
- Perhaps our training targets are contaminated with noise. What to do? This question is a bit easier, we will start here.